首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13727篇
  免费   1584篇
  国内免费   600篇
电工技术   1490篇
综合类   1277篇
化学工业   1538篇
金属工艺   696篇
机械仪表   796篇
建筑科学   1462篇
矿业工程   273篇
能源动力   2292篇
轻工业   861篇
水利工程   371篇
石油天然气   542篇
武器工业   84篇
无线电   628篇
一般工业技术   1844篇
冶金工业   394篇
原子能技术   365篇
自动化技术   998篇
  2024年   25篇
  2023年   200篇
  2022年   410篇
  2021年   560篇
  2020年   528篇
  2019年   482篇
  2018年   454篇
  2017年   540篇
  2016年   608篇
  2015年   566篇
  2014年   904篇
  2013年   932篇
  2012年   911篇
  2011年   1175篇
  2010年   765篇
  2009年   781篇
  2008年   692篇
  2007年   803篇
  2006年   739篇
  2005年   640篇
  2004年   542篇
  2003年   453篇
  2002年   407篇
  2001年   325篇
  2000年   227篇
  1999年   229篇
  1998年   167篇
  1997年   147篇
  1996年   121篇
  1995年   103篇
  1994年   86篇
  1993年   60篇
  1992年   60篇
  1991年   49篇
  1990年   39篇
  1989年   31篇
  1988年   24篇
  1987年   23篇
  1986年   19篇
  1985年   19篇
  1984年   22篇
  1983年   8篇
  1982年   12篇
  1981年   3篇
  1980年   6篇
  1979年   6篇
  1974年   2篇
  1963年   1篇
  1959年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
为研究在电流辅助成形时脉冲电流的电流密度、占空比和脉冲频率3个因素对6016-T4铝合金板材力学性能的影响规律,设计了3因素5水平的正交实验。实验表明,对6016-T4铝合金力学性能影响的主次因素是:电流密度>占空比>脉冲频率。在此基础上,选用主次2个因素,即电流密度和脉冲频率,使用控制变量法进行进一步的实验研究。实验结果表明,电流密度对6016-T4铝合金力学性能影响较大,改变电流密度的同时带来了明显的焦耳热效应,该效应对材料有明显的软化作用,降低了材料的流动应力,但是,同时也降低了铝合金板的伸长率,这是因为过大的电流密度加剧了试样的主应变演化,进而促进了试样的断裂。而脉冲频率的变化对6016-T4铝合金板材的力学性能影响很小,这也印证了正交实验的结论。  相似文献   
22.
针对强背景噪声干扰下轮对轴承故障特征微弱、难以准确检测的问题,提出了一种自适应改进高斯拉普拉斯(improved Laplacian of Gaussian,简称ILoG)算子的微弱故障检测方法。ILoG算子滤波器具有优良的信号突变特征检测能力,将其用于轮对轴承故障信号的冲击特征检测,同时利用水循环算法(water cycle algorithm,简称WCA)的寻优特性,并行搜寻筛选最佳的ILoG算子影响参数,通过对参数优化后ILoG算子滤波后信号做进一步包络解调分析,提取出轮对轴承微弱的故障特征信息。对实际轮对轴承外圈和内圈故障信号分析的结果表明,该方法可以有效检测出轴承微弱故障特征频率,故障检测效果优于小波阈值和多尺度形态学差值滤波方法。  相似文献   
23.
《能源学会志》2020,93(6):2381-2387
To enhance the activity of catalysts for CO removal, the perovskite-type catalysts La1-xSrxCoO3 (x = 0, 0.2, 0.4, 0.6, and 0.8) with different Sr2+ doping amount were synthesized by flame spray synthesis (FSS) method. The perovskite-type catalyst synthesized by FSS has a much larger specific surface area (SSA) than that prepared by other conventional methods. The SSA of catalyst increases with the increase of Sr2+ doping amount and the SSA of La0.2Sr0.8CoO3 reaches 31.65 m2/g. Compared with other conventional methods, FSS method significantly improves the activity of catalyst and makes it close to the performances of catalysts with surface modification. The substitution of La3+ by Sr2+ promotes the generation of secondary phase Co3O4 and SrCO3. The catalytic activity of La1-xSrxCoO3 increases with the addition of Sr2+, which results from the increasing active sites and oxygen vacancies. Interestingly, La0.4Sr0.6CoO3 performs the highest activity for CO oxidation and the CO conversion reaches 50% at 148.6 °C and 90% at 165.9 °C. The oxidation of CO over La1-xSrxCoO3 catalyst may follow a combination of MvK and L-H mechanisms according to the experimental results of H2-TPR. Moreover, the catalyst exhibits good catalytic activity in consecutive oxidation cycles. In consecutive oxidation experiments with La0.4Sr0.6CoO3, the CO conversion reaches 50% at 168.8 °C and 90% at 197.8 °C in the eighth oxidation cycle. These results prove that FSS method can further improve the activity of catalysts and is suitable for the preparation of efficient catalysts.  相似文献   
24.
Improving the efficiency of a vapor compression cycle and using low GWP working fluids have become more important than ever due to the environmental concerns. A saturation cycle consisting of saturation compression and saturation expansion was proposed in order to improve a vapor compression cycle performance by reducing thermodynamic losses associated with single phase gas compression and isenthalpic expansion. The saturation cycle can be approached by multi-stage cycles with two-phase refrigerant injection. In this paper, the performance of saturation cycle was theoretically investigated for low GWP working fluids including natural fluids under ASHRAE standard operating conditions and extreme heating condition. The simulation results indicate that the benefit of using the multi-stage cycle is higher for the cycle with higher pressure ratio. When the saturation cycle technique (four-stage cycle) is applied, the COP improvements of D2Y60 (mixture of R32 and R1234yf), CO2 and propane are 46.9%, 43.2% and 38.2%, respectively under extreme heating condition.  相似文献   
25.
This study presents a methodology to assess suitability of a site for small scale concentrated solar power (CSP) systems for its energy conversion efficiency and make‐up water requirement. Energy conversion efficiency of CSPs relies not only on the level of direct solar radiation but also on the performance of the cooling system. Regions with high solar potential have to deal with heat rejection at elevated temperatures which causes reduced energy conversion efficiencies due to high condenser temperatures. It is desirable to utilize wet cooling systems as they can achieve temperatures lower than the dry bulb temperature by evaporative cooling. On the other hand, such regions usually lack water resources which deteriorate the sustainable nature of CSP applications. This study combines various available models for both solar resource estimation and cooling systems' performance considering (i) the influence of ambient temperatures, and (ii) the influence of humidity levels. These models are integrated together to analyze the use of dry or wet cooling systems in terms of overall energy output and water consumption at a selected site in northern Cyprus. The model inputs consist of only annual hourly surface weather data and the location of the site of interest. The results show that dry cooling unit at northern Cyprus is capable of saving water about 18.7 ton/MWh while it produces 27% less energy compared to the wet cooling alternative for the representative annual weather data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
26.
In this paper, a new method for optimizing the fuel arrangement in a WWER-1000 reactor core during refueling cycle is presented. Finding the best configuration corresponding to the desired pattern, an enhanced PSO with a Novel Mutation operator is applied. WIMS and PARCS (Purdue Advanced Reactor Core Simulator) codes are used to calculate the neutronics cross sections and multiplication factor of core with corresponded power peaking factors (PPFs) during burn up cycles, respectively. Cross sections and burn up during cycle length were calculated by WIMS code, then core parameters were calculated by PARCS and finally hybridization of intelligent PSO (Particle Swarm Optimization) method and novel mutation were used to obtain optimal arrangement. The purposed algorithm is based on increasing burn up value and refueling cycle length and by keeping power peaking factor in safe margins. In this way, neutronic parameters of the reactor during operation cycle from BOC (Begin Of Cycle) to EOC (End Of Cycle), were calculated. Implementation of this algorithm has been done in MATLAB. In this case, Bushehr WWER-1000 NPP reactor was studied. The comparison between results and Final Safety Analysis Report (FSAR) data shows good agreement.  相似文献   
27.
This paper proposes a thermoelectric-assisted vapor compression cycle (TVCC) for applications in air-source heat pump systems which could enhance the heating capacity of the system. Performances of TVCC are calculated and then compared with that of basic vapor compression cycle (BVCC). The simulation results show that when coefficients of performance (COPs) of the two cycles are almost equal, the TVCC under maximum COP condition of the thermoelectric modules still performs better than BVCC by 13.0% in heating capacity through selecting the appropriate intermediate temperature. In addition, the TVCC can also achieve an improvement of 16.4%–21.7% in both the heating COP and capacity when compared with the BVCC with an assistant electric heater that is provided with the equivalent power input of thermoelectric heat exchanger. Thus, the TVCC could be beneficial to the applications in small heat pumps if there is always need for auxiliary electric heat.  相似文献   
28.
With U.S. geothermal power production expected to more than triple by 2040, and the majority of this growth expected to occur in arid and water-constrained areas, it is imperative that decision-makers understand the potential long-term limitations to and tradeoffs of geothermal development due to water availability. To this end, water consumption data, including documentation triggered by the National Environmental Policy Act (NEPA) of 1969, production and injection data, and water permit data, were collected from state and federal environmental policy sources in an effort to determine water consumption across the lifecycle of geothermal power plants. Values extracted from these sources were analyzed to estimate water usage during well drilling; to identify sourcing of water for well drilling, well stimulation, and plant operations; and to estimate operational water usage at the plant level. Nevada data were also compared on a facility-by-facility basis with other publicly available water consumption data, to create a complete picture of water usage and consumption at these facilities. This analysis represents a unique method of capturing project-level water data for geothermal projects; however, a lack of statutory and legal requirements for such data and data quality result in significant data gaps, which are also explored.  相似文献   
29.
People in the Middle East are facing the problem of freshwater shortages. This problem is more intense for a remote region, which has no access to the power grid. The use of seawater desalination technology integrated with the generated energy unit by renewable energy sources could help overcome this problem. In this study, we refer a seawater reverse osmosis desalination (SWROD) plant with a capacity of 1.5 m3/h used on Larak Island, Iran. Moreover, for producing fresh water and meet the load demand of the SWROD plant, three different stand‐alone hybrid renewable energy systems (SAHRES), namely wind turbine (WT)/photovoltaic (PV)/battery bank storage (BBS), PV/BBS, and WT/BBS are modeled and investigated. The optimization problem was coded in MATLAB software. Furthermore, the optimized results were obtained by the division algorithm (DA). The DA has been developed to solve the sizing problem of three SAHRES configurations by considering the object function's constraints. These results show that this improved algorithm has been simpler, more precise, faster, and more flexible than a genetic algorithm (GA) in solving problems. Moreover, the minimum total life cycle cost (TLCC = 243 763$), with minimum loss of power supply probability (LPSP = 0%) and maximum reliability, was related to the WT/PV/BBS configuration. WT/PV/BBS is also the best configuration to use less battery as a backup unit (69 units). The batteries in this configuration have a longer life cycle (maximum average of annual battery charge level) than two other configurations (93.86%). Moreover, the optimized results have shown that utilizing the configuration of WT/PV/BBS could lead to attaining a cost‐effective and green (without environmental pollution) SAHRES, with high reliability for remote areas, with appropriate potential of wind and solar irradiance.  相似文献   
30.
In this paper we apply self-optimizing control (SOC) to a cascaded LNG liquefaction plant. We first introduce the model, and then define the operational objective, which is to achieve minimal energy consumption while satisfying operational constraints. Four control structures are compared; a “standard” temperature control structure, an SOC structure with two plant measurements, an SOC structure that uses a combination of plant measurements as controlled variable, and an SOC structure where we also include measurements of disturbances in addition to the plant measurements. We find that the SOC structures significantly reduce the average steady-state loss when the operating conditions change. We furthermore find that using more plant measurements in the SOC structure results in lowered losses. In particular, for the disturbances considered, the steady-state loss becomes acceptably low, such that there is no need for a supervisory real-time optimization layer. Finally, it has been found that including disturbance measurements results in somewhat reduced losses, although the improvement was insignificant for the studied case. The effectiveness of the SOC framework is shown by closed-loop step responses to selected disturbances.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号